王寅智,1998年生人,2025年6月毕业于对外经济贸易大学统计学院,获理学博士学位,2025年6月入职上海对外经贸大学金融管理学院。研究领域为金融时间序列分析、因子分析。研究成果发表于Journal of Business & Economic Statistics、Journal of Statistical Planning and Inference、Annals of Operations Research、《系统工程理论与实践》等中英文期刊。 [1] Qin, L., Wang, Y.*, Zhu, Y., & Shia, B. C. (2025). Bayesian Dynamic Matrix Factor Models. Journal of Business & Economic Statistics, 1-24. [2] Wang, Y., Zhu, Y., Sun, Q., and Qin, L. (2024). Adaptively robust high-dimensional matrix factor analysis under Huber loss function. Journal of Statistical Planning and Inference, 231, 106137. [3] Zhu, Y., Wang, Y., Qin, L., Zhang, B., Shia, B. C., and Chen, M. (2023). Naïve Bayes classifier based on reliability measurement for datasets with noisy labels. Annals of Operations Research, 1-28. [4] Xia, C., Qin, L., Wang, Y., Yao, L., Shia, B., and Wu, S. Y. (2022). Risk factors and specific cancer types of second primary malignancies in patients with breast cancer receiving adjuvant radiotherapy: a case-control cohort study based on the SEER database. American Journal of Cancer Research, 12(6), 2744. [5] Chen Y., Zhang X., Lu L., Wang Y., Liu J., Qin L., Ye L., Zhu J., Shia B-C., Chen M-C. (2022). Machine learning methods to identify predictors of psychological distress. Processes, 10(5), 1030. [6] 秦磊,王寅智,朱映秋,谢邦昌. (2024). 已知组结构下混频时间序列的潜在因子分析. 系统工程理论与实践, 1-26. |