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Abstract

The response best subset selection model [4] addresses the problems
in which predictors are known and only responses need to be selected
in multivariate linear models. In practice, we couldn’t make sure not
only responses but also predictors and need variable selection simulta-
neously for responses and predictors, for which no research has been
found. In this paper, we propose a novelty simultaneous response and
predictor selection (SRPS) model, which is motivated by applications
where some responses or predictors are unimportant in multivariate
linear regression analysis. We simultaneously investigate variable se-
lection both for responses and predictors and estimation to regression
coefficients in the standard multivariate linear regression, group adap-
tive lasso and the response best subset selection contexts. We also
establish model consistency, consisting of response selection, predictor
selection and coefficient estimation, and the oracle property of coef-
ficient estimators. Our simulation studies suggest that the proposed
method is pronouncedly efficient. We also apply our methodology to
study a real data set.
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